Exercise 43

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}+x+2=0
$$

Solution

The two terms with x, x^{2} and x, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=1$, which means $B=\frac{1}{2}$ and $B^{2}=\frac{1}{4}$. Add and subtract $\frac{1}{4}$ on the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}+x+\frac{1}{4}\right)+2-\frac{1}{4}=0 \\
\left(x+\frac{1}{2}\right)^{2}+\frac{7}{4}=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract $7 / 4$ from both sides.

$$
\left(x+\frac{1}{2}\right)^{2}=-\frac{7}{4}
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{\left(x+\frac{1}{2}\right)^{2}} & =\sqrt{-\frac{7}{4}} \\
& =\sqrt{\frac{7}{4}(-1)} \\
& =\sqrt{\frac{7}{4}} \sqrt{-1} \\
& =\frac{\sqrt{7}}{2} i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x+\frac{1}{2}$.

$$
\left|x+\frac{1}{2}\right|=\frac{\sqrt{7}}{2} i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x+\frac{1}{2}= \pm \frac{\sqrt{7}}{2} i
$$

Subtract $\frac{1}{2}$ from both sides.

$$
x=-\frac{1}{2} \pm \frac{\sqrt{7}}{2} i
$$

Therefore,

$$
x=\left\{-\frac{1}{2}-\frac{\sqrt{7}}{2} i,-\frac{1}{2}+\frac{\sqrt{7}}{2} i\right\} .
$$

